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The problem of controlling the transverse motions of a rectangular homogeneous membrane is considered. It is assumed that 
the force-type control,,~ are solely distributed along its boundary. The known initial and required final distributions of the 
displacements and velc~zities of points of the membrane are assumed to be arbitrary, sufficiently smooth functions of the Eulerian 
coordinates. An initial.boundary-value problem is solved and a problem of moments is formulated. An effective approximate 
solution is proposed for the mean square integral performance functional. A small numerical parameter, which characterizes 
the ratio of the greatest period of the free vibrations (of the lowest mode) to the duration of the control process, is taken as a 
measure of closeness. Ltws governing the regulation of the boundary force responses are efficiently constructed and error estimates 
are obtained. Several practical cases of initial and final conditions, which are frequently encountered in applied problems, are 
considered. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The controlled tra:asverse motions of a membrane are considered. Control is exercised by means of 
forces distributed ~Llong its boundary. To be specific, it is assumed that the membrane is homogeneous 
and rectangular in the plan view (Fig. 1). We shall describe displacements which are orthogonal to the 
undeformed state by the function z = z(t ,x ,y) ,  where t i> 0 is the time andx,  y are the Cartesian (Eulerian) 
coordinates of the points of the membrane which belong to the rectangle H with a boundary F. The 
equations of motioJa of the membrane and the boundary conditions are taken in the following standard 
form [1, 2] 

( ") pZ'=G Zx'2 +z2  , ( x , y ) e H \ F  (1.1) 

H={x,y:  O ~ x < ~ a ,  O<~y<_b}, p ,G=cons t>0  

-Y-ffZx Ix=0,a = F°'a (t, y), 0 ~< y ~< b, 0 ~< t < oo 

-Y-az~,ly=0.b= P°'b (t ,x),  0 <~ x <~ a (1.2) 

Differentiation with respect to time is indicated by a dot, while differentiation with respect to the x, 
y-coordinates is ind:icated using primes with subscripts. The constants p and G have the meaning of the 
surface density of material and the tension in the membrane, respectively [1]. 

The equation of sl:ate of the membrane (1.1) describes its transverse motions (in particular, vibrations) 
in the domain H when there are no external forces distributed over its surface. It is assumed that the 
forces b -°' a = F 0, a(t ' y), p0, b = p0, b(t ' x) are distributed solely along the piecewise-smooth boundary F 
of the rectangular domain II which is expressed by the boundary relations (1.2), see Fig. 1. The functions 
b-o, a, p0, b are unknown and depend on the options proceeding from the aims of the control. 

In order to describe the motion of system (1.1), (1.2) and to determine the control functions F °' a(t, 
y) and p0, b (t, x), which are sufficiently smooth with respect to t, y and t, x, respectively, it is necessary 
to specify the initial distributions of the displacements z and of the velocities k of the points of the 
membrane (as the result of measurements, for example) 

z(O,x ,y)  = u°(x ,y ) ,  ~.(O,x,y) = "o°(x,y), (~c,y) ~ H (1.3) 

The functions u °, a) ° in (1.3) must also be sufficiently smooth. The smoothness properties are discussed 
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more specifically below when constructing the required solution of the control problem and are governed 
by the conditions for the corresponding Fourier series to converge (see Section 3). For the present, we 
shall assume that the functions F °' a, p~, b and u °, a) ° are such that a strong (physical) solution z(t, x, y) 
of the initial-boundary-value problem (1.1)-(1.3) exists. It is also assumed that the solution converges 
with respect to an energy norm (the norm W~), that is, that the series for z converges uniformly and 
that the series for ~, z~, z~ converge with respect to the norm L2 [1-4]. 

We will now formulate the purpose of the membrane motion control and the constraints. We will 
state the problem of controlling the membrane motions by choosing boundary forces F °' a(t, y), 
P°'b(t,x) from a permissible class of smoothness. It is required that system (1.1)--(1.3) should be brought 
to a specified state after a finite time 

z(tj ,x,y)=uJ(x,y),  ~(tj,x,y)='of(x,y), (x,y)~l-I, t t.<.o (1.4) 

Here, u f, ~ are sufficiently smooth, known functions ofx andy. The instant of time tf in (1.4) when 
the control process terminates is assumed to be fixed; its value is chosen from certain additional 
considerations associated with the possibilities of the control system and other factors. 

Constraints are usually imposed on the control functions b "~ a, p0, b. These may be, for example, of 
the geometric type (with respect to a value), with respect to an integral norm (the/-problem of moments 
[5]) and so on. These constraints may also take the form of integral control performance functionals 
such as root mean square functionals [5-8], for example. To be specific, we shall take the simplest form 
of such a constraint [6] 

ItF, P]= 1 dt ¢~t, ,, 2 o F2(t,y)dy+c p2(t,x)dx ----~minF, e 

F=(FO,F,,)r, p=(pO,pi,)r cF.p =const> 0 (1.5) 

Here, F and P are two-dimensional arithmetic vector-functions and el{, c2e are weighting factors. 
No additional constraints, apart from smoothness conditions, are imposed on the controls/70, a, 
e0, b. 

The greatly simplified formulation of the problem of controlling the motions of a membrane and 
their optimization, which has been proposed in the form of (1.1)--(1.5), is of particular theoretical interest 
and may turn out to be useful in applications, such as in the control of large-scale space structures. The 
solution of the problem of controllability [5-9] and the construction of the control laws are of 
considerable importance. 

We shall now briefly comment on the boundary (boundary value) conditions (1.2), the initial conditions 
(1.3) and the final conditions (1.4) as well as on the functional (1.5). According to (1.2), the forces F 
and P can lead to accelerated translational and rotational motions of the membrane as a whole. In order 
to avoid large rotations of the plane of the membrane, the functions F °'a(t,y) and p0,t, (t, x) must comply 
with the conditions that there is no total moment of the forces about the axes lying in the plane of 
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the undeforrned taembrane. In particular, the identities F°(t) ~ F~ (t), 1~o (t) - Pgo(t) must be satisfied 
in the ease of the. zeroth harmonics (the mean values). Furthermore, in order to avoid significant 
displacements as a consequence of the control, the boundary forces must be constrained by the 
requirement that the total value is equal to zero for all t, 0 ~ t <~ tf. 

We will now discuss the initial conditions (1.3) and the final conditions (1.4). If, at a certain instant 
of time t = t*, the distributions of the displacements z(t*, x, y) ~ u* = const and the velocities i(t*, x, 
y) -= ~* = const turn out to be homogeneous then, on putting F = P ---- 0 in (1.2) for t > t*, we obtain, 
according to (1.1), the expressions z(t, x,y)  = u* + ~ * ( t -  t*), ~:(t*,x,y) ~- v*. This is a state of uniform 
motion of the membrane without relative vibrations, which may be of practical interest. 

The following formulations of the problem of controlling the transverse motion of a membrane can 
therefore be of practical importance. 

1. Suppression of the relative (elastic) displacements of a membrane in the case of arbitrary initial 
distributions u°(x,y), ~°(x,y) (1.3) from a sufficiently high class of smoothness. The state of translational 
motion of the membrane as a whole in the direction of the z-axis, that is, the values of u*, ~* can be 
(a) substantial and specified in advance, (b) insubstantial and determined while solving the main problem 
of the suppression of transverse vibrations. 

2. Bringing a membrane from the initial undeformed state (u °, ~o are constants) into a state of 
specified uniform motion u/(x,y) = const, J(x, y) = const (see above). This formulation of the control 
problem can be considered as a special ease of the preceding l(a), when there are no initial relative 
displacements, or as a supplement to l(b) (see Section 4). 

3. The excitation or (and) suppression of certain selected modes of natural vibration of a membrane 
with or without takfing account of the state of its motion as a whole (see below). 

Other particular formulations of the problem of controlling the transverse displacements of a 
membrane which ~a'e of practical interest are also possible within the framework of conditions (1.3) 
and (1.4). We note that bringing a membrane from an arbitrary initial state u°(x, y), ~°(x,y) (1.3) to a 
required final state ul(x, y) ~(x, y) (1.4) in a restricted time by means of controls concentrated on the 
boundary in accordance with (1.2) leads to considerable difficulties associated with the controllability 
and solvability of the finite-dimensional problem of moments [5-9] (see below). It is therefore customary 
to drop the requirement that the final conditions (1.4) must be strictly satisfied and to take account of 
them by means of the "penalty method". Methods based on the analytic construction of controllers 
[10], a finite mode approach, and other methods are also used. A constructive method for solving problem 
(1.1)--(1.5) is propesed based on the separation of the modes when the time t is asymptotically long f . . 
compared with the period of the natural vibrations of the lowest mode. Such a SltUatmn often arises 
in practical problems. 

2. S O L U T I O N  OF THE BOUNDARY-VALUE P R O B L E M  
FOR KNOWN CONTROLS 

In problem (1.1)-(1.5) it is more convenient to change to the dimensionless variables t., x . ,y . ,  z.  and 
parameters by introducing the unit of time 0 and the unit of length d. Putting 0 = d(p/o) tt2, we obtain 
an equation of state of the form of (1.1) in which 9 = 0 = 1. Here, the value of d can be put equal to 
a or b and the corresponding variable x, or y° varies within the interval [0, 1]. If one carries out a 
symmetric normalization on the unit of length d =  eta + lib, a + 13 > 0, then _ctai+ I~b. = 1; when 
d = (a 2 + b2) v2, we have a 2, + b 2 = 1 and if one puts d = (ab) v2, we have a,b. - and so on. 

We now introduce the dimensionless arguments t°, x,, y., functions z,, F., P°, u °'f, ~o,f and para- 
meters tf°, a°, b., c2., c~. and omit the asterisk for brevity. We will now solve the initial-boundary-value 
problem (1.1)-(1.3) under the assumption that the functions F °' a(t, y), p0, b(t ' x) are already known. 

We shall firstly consider the corresponding eigenvalue and eigenfunction problem which is obtained 
by using the standard procedure for the separation of variables and the Fourier method [1, 2]. We have 

I i  I I  Zx2 -I- Zv2 q.-~,,2Z = O, z ( t , x , y )~  T( t )Z(x ,y)  

Zx(0,y ) ' =Z'x(a,y)= , • Zv (x,O) = Z , ( x , y )  = 0 (2.1) 

For the complete orthonormalized system of eigenfunctions {Z,~(x,y)} and the system of eigenvalues 
{7~},  we find the e~pressions 

Znm(X'Y) = Xn(x)Ym(Y), ~'nm = ( `72 "1" 1'12) ~2 
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X,(x)=(al2) -K2cosvnx ,  Xo(x)=a -~ ,  v n = g n / a ,  n>~ l 

Ym(Y)=(b l2 ) -~c°Sgm y' Yo(Y ) = b - ~ '  g m = g m l b ,  m>~ i 

(2.2) 

Here {X~}, {v,,} and {I'm}, {Ix, n} are the analogous (complete, orthonormalized) systems for the one- 
dimensional problems in the intervalsx ~ [0, a] andy e [0, b], respectively. 

The solution of the boundary-value problem (1.1), (1.2) is constructed using the Fourier method [1, 
2] and Grinberg's method [6, 11]. We represent the required function z(t, x ,y)  in the form of a double 
series 

z(t,x, y)= ~, Tkt(t)Zkt(x, y ) (2.3) 
k , l~O 

in which the functions Zkt(X; y) are constructed according to (2.2) and the Fourier coefficients Tkt(t) are 
unknown and have to be determined. On substituting series (2.3) into the left-hand side of Eq. (1.1), 
multiplying by Znm(X, y)dxdy and integrating by parts (over the domain rl), we obtain, when account is 
taken of the boundary conditions, a two-dimensional denumerable system of equations of the form 

T.m +)¢~',mTnm =O~m(t), Ohm(t) = (~n,Fm(t))+(qm,Pn(t)) 

= ~ .  = X.  (a) ,  n >~ 0 (2 .4)  

0 '  b T 0 b 
n , . = ( n . , n . ) ,  n,,, rlm=Y,n(b), m> O 

In Eq. (2.4) for Tnm, the expressions of the type (~,  Fro) are scalar products of the corresponding 
two-dimensional arithmetic vectors which are defined below and in (1.5) and (2.4). The functions Fro(t), 
P,(t) are the Fourier coefficients of the boundary controls, that is 

F(t,y)= Y~ Fm(t)Ym(y), F,n(t)=(F,Y,,) (2 .5)  
m~O 

P(t,x)= Y P.(t)X.(x), P.(O=(P,X.) 
n~O 

Henceforth, the corresponding scalar products in L2 are denoted by angle brackets. 
Equations (2.4) must be supplemented with the initial values of the functions T,,m, Tnm. Using the 

initial conditions (1.3), we obtain the expressions 

0 0 
- U,,, T~,, = Vim = (2.6) 

for the ry lu ed r.m(0) = Lm (0) = 
Here u;,m, F~nm are the Fourier components of the known, sufficiently smooth functions with respect 

to the orthonormalized system {Znm}. A strong or classical solution of the initial-boundary-value problem 
(1.1)-(1.3) can therefore be constructed for known functions F(t,y), P(t, x) of a sufficiently high order 
of smoothness. It has the form of the double series (2.3) in which the functions Tnm, ]/',,,,, are found by 
the quadratures 

o | t 

Tnm (t) = U': m cos 3,,,.t + V'm sin X,mt + T " -  I sin X,m (t - "t)O,m (x)dx, n + m >~ 1 
~ nra A" nm 0 

t 

Too(t) = U~o + V~ot + J (t - x)Ooo(x)dx, T,,, - dT"m 
o dt (2.7) 

The coefficients Thin(t), n + m ~> 1 characterize the relative displacements of the elements of the 
membrane (the transverse vibrations). The function Too(t) describes the motion of the membrane as a 
whole along the z-axis. If the total force Ooo(t) - 0, then the centre of mass of the membrane moves 
uniformly with an initial velocity WooZoo. However, the functions O~,(t) in (2.7) are unknown and are 
to be determined on the basis of the final conditions (1.4), taking account of the control performance 
criterion (1.5). 

We shall now discuss the frequency properties of the finite-dimensional vibrational system (2.4). It 
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can be shown that the two-dimensional spectrum {L.m} forms a dense set in the following sense. By 
choosing sufficierttly large integers of n -> 1 for some m ~< M, it is possible to achieve any closeness of 
2tam to an arbitraly number 2tam., where the number m* ~< M is fixed and as large a set of values gun 
as may be desired is contained in the neighbourhood of ~ . ,  which is as small as may be desired. The 
analogous assertion holds in the case of sufficiently large m for n, n* ~< N. Moreover, there is a 
denumerable set of identical values of ~ and 2~a in the case of a rational ratio a/b. In particular, when 
a = b (a square membrane), the frequencies will be identical (apart from the inversion n ---> m, 
m ---> n) 

1)~=5, m = 5; n=7, m=l ;  2) 7,4;8, 1; 
3) 7, 6; 9, 2; 4) 9, 7; 11, 3; 5) 9, 8; 12, 1; 
6) 10,5; 11,2; 7) 10, 10; 14,2; 8) 11,7; 13, 1; 
9) 11,8; 13,4; 10) 11, 10; 14,5; 11) 12, 11; 16,3; 

12) 13, 6; 14, 3; 13) 13, 9; 15, 5; 14) 13, 11; 17, 1; 
15) 13, 13; 17, 7; 16) 14, 8; 16, 2; 17) 14, 12; 18, 4; 
18) 14, 13; 19, 2; 19) 15, 10; 17, 6; 18, 1; 20) 16, 7; 17, 4; 
21) 16, il; 19, 4; 22) 16, 13; 19, 8; 20, 5; 23) 16, 15; 20, 9; 
24) 17,6; 18, 1; 25) 17,9; 19,3; 26) 17, 11; 19,7; 
27) 19, 8; 20, 5; ... and so on 

When a -> b or b -> a, the frequencies ).rim(a, b) are also close for n, m -- 1. The above-mentioned 
behaviour of the frequency spectrum {Tq~(a, b)} of system (2.4) makes the effective solution of the 
control problem [5=9, 12] and the construction of the control laws [5, 6, 10, 13] far more difficult. These 
difficulties result fi:om the fact that there are no controls distributed over the surface of the membrane, 
that is, the coefficients Ohm(t) in (2.4) do not form a "complete basis". 

3. A P P R O X I M A T E  S O L U T I O N  OF THE O P T I M A L  C O N T R O L  P R O B L E M  

We will reformulate the initial problem (1.1)-(1.5) in terms of the Fourier coefficients Tun(t) of the 
function z(t, x, y). The  transverse motions of the membrane are described by the system of equations 
(2.4), (2.5) in which F ° '  a(t), p0, b(t ) are unknown control functions which are to be determined; the 
initial conditions have the form of (2.6). The controls must be selected from a permissible class of 
smoothness such that the final conditions are satisfied at the instant of time t = tf (1.4) 

_ . , , . ,  = ( u . , , = . . ) .  = = Tn.,(tf ) -  f (3.1) 

The Fourier coefficients T.m(t), V.m(t) =- 7"am(t) are calculated according to (2.7). Moreover, the 
functions Tin(t), P. ( t )  must be bounded in accordance with the optimality condition (1.5) which takes 
the form (see (2.5)) 

' [ F , p ] = I ~ I c ~  ~_.Fll2(t)+C~ ~_.Pk2(t)ldt--> min 
2 0 L t~0 k~0 j {F,.},IP.} 

(3.2) 

We now apply an analogue of the maximum principle conditions [6, 7] to the finite-dimensional 
problem of the optimal control (2.4), (2.6), (3.1) and (3.2). We introduce the finite-dimensional vectors 
*un(t), ~Pun(t) associated with the variables Tun, Vun respectively and, using the standard procedure, 
obtain the expresshms for the optimal controls Fro, P .  

Fro(t) = CF 2 Y.~k~?~(t), P.(t) = c~ 2 Y.r lz~. / ( t )  
k~0 120 

~Pnm (t) = An, " sin ~..rat + Bnm cos ~,.m t, n + m ~ 1 

Woo(t) = Aoot + Boo, A,,m,B,, m = const 

(3.3) 

The coefficients Aun, Bun must satisfy the denumerable system of linear algebraic equations which 
0a follow in an elementary manner from (3.1) after substituting the functions F m '  (t), p o, b (t) (3.3) in 

formulae (2.7) taking account of expression (2.4) for Ohm(t) (n, m t> 0), and take the form 
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+ = Anl'qnl m g,,kmAkm + ~nk.,B~,, Z + Bntrlnt,. 
I~0 

= U;,t,,, - U.°,,, cos ~.,,mt/-- (V,,°., I ;~,,., )sin Z...,t t 

{~c.," A ,'c + cs Bnl.qnlm)_ 2 t ,,k,,, k,,, + { n m B k . , )  ]L(AnIYlnl., + cc - 
k >~0 I >~0 
_ .t o - V,,,,, + U,,,,,~,,,,. sin L,,,,,tf - Vi~t., cos)%,,,tt ,  n ,m ~ 0 

(3.4) 

Coefficients with triple subscripts of the type of ~ , . . . ,  rl~,n (3.4) are obtained by integrating 
elementary expressions containing products of trigonometric functions or of a trigonometric function 
and a linear function. For the extreme coefficients, we have 

~,'~,,, = s in~ ,m( t  r - t ) s in~.kmtdt ,  n ,k  >~ 0 (3.5) 
c'~'~'n,,~ o 

tj 
rlCnt~m = ~ Icos~.nm(t f  - t)cos~.nltdt,  m, l  >~ 0 

Cp 0 

The intermediate coefficients ~,~,m . . . .  cs , rlntm (3.4) have a similar form. There is no need to write out 
the exceedingly long explicit expressions for the quadratures (3.5) and others. Equations (3.4) and the 
coefficients (3.5), when n = m = 0, are obtained by taking the limit as Z~0 ---> 0. 

It is not possible to construct the exact solution of system (3.4). However, analysis of the coefficients 
(3.5) shows that their asymptotic behaviour with respect to the value of ty, tf ~ ** is different and that 
the diagonal ("resonance") terms are the leading terms. This enables us to construct an approximate 
solution and to estimate the error with respect to the small quantity 1/t I ---> 0 [13]. This approach is 
equivalent to the use of asymptotic methods of the separation of variables which are analogous to the 
method of averaging [14]. 

The relations presented above are extremely complex and inconvenient for analysis. It is preferable 
to use equations in osculating variables [14, 15] which are obtained by means of the standard substitution 

T.. ,  = C,,., cosZ..mt + S.m sin ~..r.t, Too =- TOO 

T,,,,, = V,,,,, = OTa,,,13t, Voo =- Voo, n + m >~ l 

(3.6) 

Next, by virtue of Eqs (2.4), on differentiating expressions (3.6) we obtain equations of motion 
in the variables Too, Voo, Cnm, Snm, n + m >I 1. The initial conditions (2.6) and final conditions (3.1) 
are reduced to the required form and, as a result, we have the finite-dimensional two-point problem 

too=voo,% =ooo, roo(O)=Vgo, voo(o)=Vgo 
C,,m=-~.-~mOn,.sin~..m t, Snm=Z.-n~O.,nCOS~.n.,t, Cnm(O)=U°m,  S.. . (O)=k~V ° 

Too(tf)  = U f ,  Voo( t f )= ~ ,  Cnm(tt .)= Cln '- = UJnm cos~,nmty-  

_~.~1' v, it., sin ~.., . tf ,  S.,. (tf) = S~m -- U~a sin k. , . t /+ ~.~2 V~.n cos knm Q, n + m ~ 1 

(3.7) 

It follows from (3.7) that, when Ohm(t) ---- 0, the variables C,~, S ~  = const. The control problem involves 
the choice of permissible controls Fro, P,, which satisfy the final conditions (3.7) and lead to a minimum 
of the functional I (3.2). Equations (3.7) are much more convenient since the adjoint variables tb~, ~Fnm 
corresponding to Cnm, S,~ will be constant (analogous to the coefficientsAnm, B,~ in ~nm(t), q'nm(t) (3.3)). 

Using the standard maximum principle procedure enables us to obtain the structure of the expressions 
for the optimal controls as functions of time 

- !  Fm(t ) -  c2 Y~ ~kAk,,,(t), P,,(t)= I E q l A k l ( t  ) (3.8) 
k~O C2 l~O 

o,,,,,(t) =-~- Z({,, t ' ~k )Akin (8) -I" - ~  ~ Anl (r)(Tll , Tim ) 
C F k>~O Cp I~0 
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~k- I A,,,.(t)= . . ,(W.,,,cos~..t. t  O,,msin~.,mt ) 

A0o(t) =W° -q~00t; *OO,W ° ,  O,m,W,m = const 

The coefficients *,,m, W,~, occurring in the functions O ~  (3.8), remain to be determined. On 
substituting these fianctions into Eqs (3.7) and integrating with respect to t, while taking account of the 
initial conditions, we obtain the representations for the required variables 

Voo(t) = V o + ;~o(VOt_ ~.oot2)+ AVoo(t), ; 2  = c-¢2~ + c~2rl 2 

0 1 2 0 2 T°° ( t ) = U ° + V~o t + ~ ; oo ( tP ~o t - ~ ~ oo t 3 ) + A Too ( t ) (3.9) 

Cnra(t ) _ 0 2 -2 2 -2 2 -Unm + /~2~nm~nm~nmt + ACnm(t), ~nrn = CF ~n +Cp21"I2n 

Snm(t)=~'-n IV°,  +~2m~,-n2Wnrnt+ASnra(t), n+m>~ 1 

The leading ("resonance") terms are singled out in expressions (3.9) and the relatively small 
corrections are denoted by the symbol A. We will now determine the unknown coefficients ~nm, ~P,~n 
proceeding from the approximate expressions (3.9) in which the corrections are set equal to zero [13]. 
By solving the equations corresponding to the final conditions (3.7), we find the above-mentioned 
approximate values of the required coefficients 

~ = 6~.i~tf 2 (2t;18Too - 8Voo), ~ ' )  = 2;~t~ j (3t~16Too - ~iVoo ) (3.10) 

o(lm) '-2 -1 2 (I) -2 -I  2 
= 2~.,mt I Xn,nSCnm, W~, = 2~nmt I ~..mSS.., 

sroo = - u o - v o , f   voo % v o ,  = c L  0 sL -, o , = . . . .  ~..~ Vim 

We now introduce a small parameter e = t/-1 ,~ 1; e --~ 0 as tf ~ **, where tf is the time of the process 
measured in units of 0 (see the beginning of  Section 2). We shall assume the value of Ooo to be small; 
for example, Ooo ~ ~ when 0 ~< t ~< tf. It suffices to use the estimates ~(~ - e 2, ~p0(1) _ e for this purpose, 
which necessarily hold if ~iToo ~ e - ,  8Voo ~ 1 (see (3 10)) Hence, the sum (resultant) of the boundary 

,a ,b • . " " 
orceslF° (t,y), pO_ lit, x)  is ass_umed to be asymptotically small O(E). However, over a lon~time interval 
rf -- e - ,  me state of motion of the membrane as a whole can vary substantially: 8Too - e- with respect 
to position and 8Voo - I with respect to velocity. Similarly, we require that the controls On,n, n + m 
I should also be sm~dl with respect to the parameter e, that is, Ohm - E. It follows from (3.10) that this 
requirement is satisfied if ~0,~ n) - e, ~F(~ - e or ~nm, ~S~n - 1. The mechanical meaning of this assump- 
tion is that, by acting ("in resonance") on the edge of the membrane with a force Ohm - e for a long 
time, it is possible to change (by an amount O(1)) the ampfitude of the transverse vibrations of an 
arbitrary mode Tnm, n + m ~ 1, considerably. 

Using the approximate values (3.10) of the adjoint variables, we obtain, by (3.8), by controls Fro, pn, 
Ohm in explicit form 

F ~ I ) ( / ) =  I_L x-,J: A(I) + 
' el;'-2 k)oL'~k"km(t)' P(n')(')= l~0 A`2] (t)Tl/ 

6'(l),m (t' = + ~ ' ~ n , ~ ,  'A(~),(t' + -'~l~oA'l/p (')(rl,, fir a ' 

-I (1) (1) sin ~.nm t) = A ' 2 ' . , ) - -  

(3.11) 

Expressions (3.11) and (3.10) therefore determine the optimal control of the first approximation with 
respect to the small parameter e. Indeed, let us substitute the known controls (3.11) into (3.7) and 
integrate with the specified initial conditions. We obtain explicit representations for the coefficients 
Too, Voo, Cn~, Sam, n + m a 1 of the form (3.9) where the constants are defined by (3.10) and 
the corrections, which are relatively small (with respect to the powers of e), can be estimated. 
The possibility of constructing such estimates is closely associated with the convergence of the series, 
which is determined by therate  of decrease in q~(~, ~P(~ (3.10), that is, by the classes of smoothness 
ot the functions u a(x, y), ~Ua(x, y). 
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It follows from (3.11) that the series for F(m t) P(~! OOn)n ) and, also, the series of (2.5) fo r  F(1)(t, y), 
PO)(t, x) converges absolutely and uniformly provided that AO)nm - (rim) -0 +v) which, according to (3.10), 
is equivalent to the conditions 5C,~, K~m - ( n m )  -(2+v), where T > 0. The conditions are equivalent to 
the requirements on the Fourier coefficients that U°~,~, V°,b~.-ln~ - (nm) -(2+r). We note that estimates 
of the form c(nm) 1/2 <<- knm <<- C(n + m) hold for ~m. We shall next assume that the above-mentioned 
sufficient conditions for convergence are satisfied. The approximate control functions will then be the 
classical (rather than generalized) functions which can be readily implemented in practice. 

We will now estimate the errors in satisfying the final conditions resulting from the quantities A in 
(3.9). It is shown by direct integration of the series for O00 (without taking account of the leading term) 
t h a t  AVoo(tf), - E, AToo(tf) ~ 1. We note that, with respect to  Too(tf), it is also possible to achieve an error 
O(e). Since 8V00 ~ 1, ST00 ~ e -', the relative errors are estimated as O(e) [13]. It is then necessary to 
allow for two facts when estimating the errors ACnm(tf), AS~m(tf). The first is the fact that integration 
of terms of the type t sin L,~t, t cos L~t  within the limits fromt --- 0 and t = tf leads to quantities of 
the order oftf. Taking account of the factor O(e2), these terms in the above-mentioned series when n 
= 0 or m = O(n + m I> 1) will be quantities of the order of O(e). The second difficulty lies in taking 
account of the "small denominators" which arise during the integration of terms of the form sin ~,kmt 
Sin k,~4, sin k, at sin ~%mt and similar terms in which there are cosines (see (3.7), (3.8)). The summation 
is carded out over the indices k and l and, moreover, k ~ n, l # m. The small denominators will be 
estimated in the following manner 

I~*km -- ~nm l~- (~  [ a )  2 [k - nl(k + n)(~,km -- ~'nrn ) - I ,  [k - n[~  1 

I~nl -- knml:  (~ / b )2ll - m[(l + m)(~.,t + ~nm) -1 , II - ml>--- 1 

Under the assumptions which have been made regarding the rate of decrease in the coefficients ~)Cnm, 
~S,,m, it can be shown using the integral criterion of the convergence of the series (with respect to k 
and l) that 

ACnm (tf ) ~ e(nm) -2, ASnm (tf ) ~ e(nm) -2 (3.12) 

The occurrence of small denominators does not enable us to increase the order of smallness of the 
errors with respect to n, m when the rate of decrease in &C,,,n, ~S,~ increases, that is, the class of 
smoothness of the initial and final distributions u°'f(x,y), xfl'f(x,y). It follows from the estimates (3.12) 
that there is e-closeness of the solution with respect to a uniform metric and with respect to the L2 
metric of its derivative 

max [z(I)(t,, x, y ) - u f ( x ,  y ~ C e ,  IIi0)(tl, x, y ) - x f l ( x ,  y) l l~<Ce  
(x, y)~rl [ 

Here, zO)(t,x,y) is the solution of the boundary-value problem for the known control func t ions  F(1)(t, 
1) y), P( (t, x) of the first approximation with respect to e. 

A solution of the control problem with a relative error e with respect to the metric W21 in the 
class of permissible functions has therefore been constructed. The closeness of the control to the 
optimal control, that is, with respect to the functional (3.2), requires a special study. It would be expected 
that the relative error will be an amount O(e 2) and the absolute error O(e 3) since the adjoint variables 
are asymptotically small, that is, *n,,, Wnm = O(e) and the error in determining them is O(e2). Since 
the first variation of the functional in the neighbourhood of the optimal value is equal to zero, the 
correction resulting from the error O(e 2) will be a quantity of the second order of magnitude, that 
is, AI - O(e4) t f  = O(e3).  

Expressions (3.11) and (3.10) therefore determine the open-loop control in the first approximation 
with respect to e. The transition from arbitrary initial distributions u°(x, y), t)°(x, y) to the current 
distributions z(t, x, y), ~:(t, x, y) at any instant of time tf is a formal method for constructing a 
feed-back control. For this purpose, we put t = 0 (or, more accurately, t --) t - to and then to -~ t, 
that is, t ~ 0) in (3.11); the coefficients ~(~ ,  n, m/> 0 vanish and only ~ ( ~  remain. We put t f ~  t f - t  
(or, more accurately, tf ~ t f -  to and then to ~ t, that is, ty ~ t f -  t) for W(~ and the Fourier coefficients 
~/0,,,n of the initial distribution aft(x, y) are replaced by the coefficients V~,n of the current velocity 
distribution ~(t, x, y) = EVkt(t)Zkt(x, y). They can be calculated by processing measurements of ;~(t, x, y) 
at the current instant of time t < tf. Note that the controls F,,, and Pn possess a singularity of the 
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(ot~ - 0 -1 type as t ---> te. It  is therefore preferable to use other  feed-back laws [15] in a small ne ighbourhood 
the terminal  man~fold uf(x,y), ~f(x,y). 

4. E X A M P L E S  

We will now con,,;ider some special cases of the initial distribution (1.3) and final distribution (1.4) which are 
frequently encountered in applications. The corresponding formulations of the control problems axe presented in 
Sectio n 1. 

1. We will obtain the solution for the suppression of the transverse vibrations of a membrane using forces of the 
form of (3.11) in which we substitute the quantities C ~  = 0, S/un = 0, that is, 5C~  = - U~nn, ~)S~ = -~.-lnnV°un 
for the parameters ,I~(1,~ ) , ~F(nl)m (3.10), n + m i> 1. If the conditions of the motion of the membrane as a whole (of 
the centre of mass) are specified in advance, the parameters ~(~, tp0(1) have the form (3.10) when U~0, V~0 axe 1) 1) v_ . .  
fixed. This is case (a). When t > t/~ the controls F ( (t, y), P( (t, x) are set equal to zero. In case (b), when the conditions 
of motion of the centre of mass for t = tr are unimportant, the controls have the form of (3.11) with the parameters 
tb(~ = O~  1) = 0, that is, A(~(t) --- 0. "I:he total or integral values of the forces Ftl)(t,y), P(1)(t, x) will be equal to 
zero. As above, F (1) = p0) _- 0 for t > tf (finite control [5]). 

2. Approximate control of the motion of the centre of mass of a membrane u ° = const, a~ ° = const (U°nn = 
V°nn = 0, n + m i> 1) is exercised by means of forces (3.11) in which A(1)n~(t ) --- 0, n + m ~ 1, that is, F(mlXt) = 
P(~t) --- 0. The functions F(01)= c - ~ A ( ~ ,  PO) 0 = c-2rl0A(t~ in which the coefficients O(t~ = ~0~ ) are defined by 
(3.10), are non-zero when 0 <~ t ~< tf. This formulation of the problem is a special case of that treated above (see 
la) when U ° = l~,~ = 0, n + m ~ 1. It may also be considered as being supplementary to l(b) since, after 
suppression of the viLbrations of the membrane, it is brought into a state of specified motion without exciting these 
vibrations (to the accuracy being considered). 

3. Excitation of certain selected modes from the subset of indices (n, m) e {N* x M*} of the natural vibrations 
of the membrane (or their suppression) with and without allowing for the motion of the centre of mass is performed 
in the following manner using control forces based on expressions (3.10). The Fourier coefficients Ufun, Vfnn, n + 
m >~ 1 of the final distributions uf(x, y), if(x, y) for ~)Cun, 5Sun (3.7) must be assumed to be the required values, 
while the adjoint(1) v~tnables" ~(1,~), ~F(1,~) i (n, m) ~ {N* x M*} are calculated from (3.10) .and substituted, into the 
functions Ann(t) (3.11). The remaining modes of vibration Tun(t), (n, m) ~ {Nx M}\{N x M } which are of no 
interest, remain unchanged if one assumes that tb(l~ ) = q'(nlm ) = 0, that is, A(n~m) (t) ------ 0 in the case of the above- 
mentioned indices. If it is required that certain selected modes from the subset of indices {N* x M*} should be 
excited while others from the subset {N** x M**} (all the remaining modes, for example) are suppressed then 
this problem reduces to the preceding problem U ~  = I/fun = 0 for the subset {N** x M** }). Motion of the centre 
of mass of the membrane is regulated by the choice of the coefficients tb O) = ~F~ 1). 

The approximate control laws, constructed in Section 3, therefore enable one to solve in a simple manner the 
complex problem of the open-loop control of arbitrary modes of the transverse vibrations of a membrane by means 
of forces distributed along its boundary. Of course, under practical conditions, control of a relatively small number 
of the lowest vibrational modes can only be performed since generating the high-frequency forces encounters 
considerable difficulties due to the occurrence of interference. 

Note that the prob;lem of controlling the transverse motions of a membrane with arbitrary geometric and physical 
characteristics (non-:rectangular form, inhomogeneous density, non-uniform tension, etc.) can be constructively 
solved in a similar manner using the approach described in Section 3 [13]. 
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